久久人人做人人妻人人玩精品hd,精品国产成人av在线,好姑娘在线视频免费观看 ,含羞草电影免费看韩国,果冻传媒一区

當前位置 : 首頁  圖書 正文

數(shù)學分析(第三冊)簡介,目錄書摘

2019-10-18 14:16 來源:京東 作者:京東
數(shù)學分析
數(shù)學分析(第三冊)
暫無報價
100+評論 100%好評
內(nèi)容簡介:  《數(shù)學分析(第三冊)》講述的是高等數(shù)學的基礎(chǔ)內(nèi)容——數(shù)學分析,其核心內(nèi)容是微積分學,《數(shù)學分析(第三冊)》共分七章,包括多元函數(shù)及其極限、連續(xù)性,多元函數(shù)的微分學(一),多元函數(shù)的微分學(二),含參變量的積分,重積分,曲線積分與曲面積分,各種積分之間的聯(lián)系、場論初步。
  《數(shù)學分析(第三冊)》是由作者在北京大學數(shù)學科學學院多年教學所使用的講義基礎(chǔ)上修改而成,內(nèi)容豐富、深入淺出,對較難理解的定理、定義以及可深入探討的問題,《數(shù)學分析(第三冊)》以加注的形式予以解說,以利于讀者更好地接受新知識,在章末附有后記,意在為讀者更清楚地了解知識背景,更迅速地提高數(shù)學能力創(chuàng)造條件,《數(shù)學分析(第三冊)》選用適量有代表性、啟發(fā)性的例題,還選人足夠數(shù)量的習題和思考題,習題和思考題中,既有一般難度的題目,也有較難的題目,供讀者酌情選作。
  《數(shù)學分析(第三冊)》可作為大學本科階段的數(shù)學、概率統(tǒng)計、應用數(shù)學、力學以及計算機等相關(guān)專業(yè)的教科書,也可作為廣大數(shù)學工作及愛好者的參考書。
目錄:致讀者
緒論 多元函數(shù)微積分史簡介
第13章 多元函數(shù)及其極限、連續(xù)性
13.1 多元函數(shù)的概念
13.1.1 背景
13.1.2 多元函數(shù)的定義及其幾何表示
13.1.3 點集范例、基本性質(zhì)
13.2 多元函數(shù)的極限
13.2.1 重極限(全面極限)
13.2.2 累次極限
13.2.3 一致極限
13.3 多元函數(shù)的連續(xù)性
13.3.1 數(shù)值函數(shù)的連續(xù)性
13.3.2 向量函數(shù)的連續(xù)性
13.3.3 同胚變換

第14章 多元函數(shù)的微分學(一)
14.1 偏導數(shù)與全微分
14.1.1 多元函數(shù)的偏導數(shù)
14.1.2 多元函數(shù)的全微分
14.2 多元復合函數(shù)的偏導數(shù)
14.2.1 求多元復合函數(shù)偏導數(shù)的方法
14.2.2 齊次函數(shù)
14.2.3 一階微分形式的不變性
14.2.4 同胚變換的Jacobi行列式
14.3 高階偏導數(shù)與高階全微分
14.3.1 多元函數(shù)的高階偏導數(shù)
14.3.2 多元復合函數(shù)的高階偏導數(shù)
14.3.3 多元函數(shù)的高階全微分
14.4 多元隱函數(shù)的求導法
14.4.1 單個方程的情形
14.4.2 方程組的情形
14.5 曲線的切線、曲面的切平面
14.5.1 由參數(shù)方程表示的曲線和曲面的情形
14.5.2 由隱函數(shù)表示的曲面和曲線的情形
14.6 方向?qū)?shù)和梯度
14.6.1 多元函數(shù)的方向?qū)?shù)
14.6.2 多元函數(shù)的梯度
14.7 中值定理、Taylor公式、凸函數(shù)
14.7.1 多元函數(shù)的中值定理
14.7.2 多元函數(shù)的Taylor公式
14.7.3 凸函數(shù)

第15章 多元函數(shù)的微分學(二)
15.1 隱函數(shù)存在定理
15.1.1 一個方程的情形
15.1.2 方程組的情形
15.2 逆變換(反函數(shù))存在定理
15.3 函數(shù)的極值
15.3.1 一般極值問題
15.3.2 條件極值問題
15.3.3 最小二乘法

第16章 含參變量的積分
16.1 含參變量的定積分
16.2 含參變量的反常積分
16.2.1 一致收斂的概念及其判別法
16.2.2 含參變量的無窮積分的性質(zhì)
16.3 含參變量的積分計算舉例
16.4 Euler積分——B函數(shù)與r函數(shù)

第17章 重積分
17.1 重積分的定義
17.1.1 曲頂柱體的體積
17.1.2 平面點集的面積
17.1.3 重積分的定義
17.2 重積分的存在性及其性質(zhì)
17.2.1 函數(shù)可積的充分必要條件
17.2.2 可積函數(shù)類
17.2.3 可積函數(shù)和的性質(zhì)
17.3 化重積分為累次積分
17.3.1 化二重積分為累次(定)積分的公式
17.3.2 公式的應用舉例
17.3.3 化三重積分為累次積分
17.4 重積分的變量替換
17.4.1 二重積分的變量替換公式
17.4.2 公式的應用舉例
17.4.3 三重積分的變量替換公式,例
17.5 n重積分簡介
17.6 反常重積分

第18章 曲線積分與曲面積分
18.1 第一型曲線積分
18.1.1 第一型曲線積分的定義及其存在性
18.1.2 計算公式
18.2 第二型曲線積分
18.2.1 第二型曲線積分的定義及其存在性
18.2.2 計算公式
18.2.3 兩種類型曲線積分之間的聯(lián)系
18.3 曲面面積
18.3.1 由顯方程表示的曲面
18.3.2 由參數(shù)方程表示的曲面
18.3.3 連續(xù)曲面的面積
18.4 第一型曲面積分
18.4.1 第一型曲面積分的定義及其計算
18.4.2 例與物理應用
18.5 曲面的側(cè)
18.6 第二型曲面積分
18.6.1 第二型曲面積分的定義
18.6.2 計算公式
18.6.3 例與應用
后記

第19章 各種積分之間的聯(lián)系、場論初步
19.1 Green公式
19.1.1 Green公式
19.1.2 例、調(diào)和函數(shù)
19.2 Gauss公式
19.2.1 Gauss公式
19.2.2 例與物理應用
19.3 Stokes公式
19.4 Brollwer·不動點定理
19.5 曲線積分與路徑無關(guān)性
19.6 場論初步
19.6.1 數(shù)量場與向量場
19.6.2 數(shù)量場的梯度
19.6.3 向量場的流量與散度
19.6.4 向量場的環(huán)量與旋度
19.6.5 保守場與勢函數(shù)
19.7 場論的應用
19.7.1 在流體力學中的應用
19.7.2 在電磁場中的應用
19.7.3 Maxwell方程組
熱門推薦文章
相關(guān)優(yōu)評榜
品類齊全,輕松購物 多倉直發(fā),極速配送 正品行貨,精致服務 天天低價,暢選無憂
購物指南
購物流程
會員介紹
生活旅行/團購
常見問題
大家電
聯(lián)系客服
配送方式
上門自提
211限時達
配送服務查詢
配送費收取標準
海外配送
支付方式
貨到付款
在線支付
分期付款
郵局匯款
公司轉(zhuǎn)賬
售后服務
售后政策
價格保護
退款說明
返修/退換貨
取消訂單
特色服務
奪寶島
DIY裝機
延保服務
京東E卡
京東通信
京東JD+