內(nèi)容簡介: 《金融風(fēng)險和衍生證券定價理論:從統(tǒng)計物理到風(fēng)險管理》(第2版影印版)由劍橋大學(xué)出版社出版,原書名為:Financial Engineering and Computation: Principles, Mathematics, and Algorithms,是一本非常優(yōu)秀的有關(guān)金融計算的圖書。 如今打算在金融領(lǐng)域工作的學(xué)生和專家不僅要掌握先進(jìn)的概念和數(shù)學(xué)模型,還要學(xué)會如何在計算上實現(xiàn)這些模型?!督鹑陲L(fēng)險和衍生證券定價理論》內(nèi)容廣泛,不僅介紹了金融工程背后的理論和數(shù)學(xué),并把重點放在了計算上,以便和金融工程在今天資本市場的實際運作保持一致?!督鹑陲L(fēng)險和衍生證券定價理論》不同于大多數(shù)的有關(guān)投資、金融工程或者衍生證券方面的書,而是從金融的基本想法開始,逐步建立理論。作者提供了很多定價、風(fēng)險評估以及項目組合管理的算法和理論。
目錄: ~Preface<br><br>1 Probability theory: basic notions<br>1.1 Introduction<br>1.2 Probability distributions<br>1.3 Typical values and deviations<br>1.4 Moments and characteristic function<br>1.5 Divergence of moments-asymptotic behaviour<br>1.6 Gaussian distribution<br>1.7 Log-normal distribution<br>1.8 Levy distributions and Paretian tails<br>1.9 Other distributions (*)<br>1.10 Summary<br><br>2 Maximum and addition of random variables<br>2.1 Maximum of random variables<br>2.2 Sums of random variables<br>2.2.1 Convolutions<br>2.2.2 Additivity of cumulants and of tail amplitudes<br>2.2.3 Stable distributions and self-similarity<br>2.3 Central limit theorem<br>2.3.1 Convergence to a Gaussian<br>2.3.2 Convergence to a Levy distribution<br>2.3.3 Large deviations<br>2.3.4 Steepest descent method and Cram~~r function (*)<br>2.3.5 The CLT at work on simple cases<br>2.3.6 Truncated L6vy distributions<br>2.3.7 Conclusion: survival and vanishing of tails<br>2.4 From sum to max: progressive dominance of extremes (*)<br>2.5 Linear correlations and fractional Brownian motion<br>2.6 Summary<br><br>3 Continuous time limit, Ito calculus and path integrals<br>3. I Divisibility and the continuous time limit<br>3.1.1 Divisibility<br>3.1.2 Infinite divisibility<br>3.1.3 Poisson jump processes<br>3.2 Functions of the Brownian motion and Ito calculus<br>3.2.1 Ito's lemma<br>3.2.2 Novikov's formula<br>3.2.3 Stratonovich's prescription<br>3.3 Other techniques<br>3.3.1 Path integrals<br>3.3.2 Girsanov's formula and the Martin-Siggia-Rose trick <br>3.4 Summary<br><br>4 Analysis of empirical data<br>4.1 Estimating probability distributions<br>4.1.1 Cumulative distribution and densities - rank histogram<br>4.1.2 Kolmogorov-Smirnov test<br>4.1.3 Maximum likelihood<br>4.1.4 Relative likelihood<br>4.1.5 A general caveat<br>4.2 Empirical moments: estimation and error<br>4.2.1 Empirical mean<br>4.2.2 Empirical variance and MAD<br>4.2.3 Empirical kurtosis<br>4.2.4 Error on the volatility<br>4.3 Correlograms and variograms<br>4.3.1 Variogram<br>4.3.2 Correlogram<br>4.3.3 Hurst exponent<br>4.3.4 Correlations across different time zones<br>4.4 Data with heterogeneous volatilities<br>4.5 Summary<br><br>5 Financial products and financial markets<br>5.1 Introduction<br>5.2 Financial products<br>5.2.1 Cash (Interbank market)<br>5.2.2 Stocks<br>5.2.3 Stock indices<br>5.2.4 Bonds<br>5.2.5 Commodities<br>5.2.6 Derivatives<br>5.3 Financial markets<br>5.3.1 Market participants<br>5.3.2 Market mechanisms<br>5.3.3 Discreteness<br>5.3.4 The order book<br>5.3.5 The bid-ask spread<br>5.3.6 Transaction costs<br>5.3.7 Time zones, overnight, seasonalities<br>5.4 Summary<br><br>6 Statistics of real prices: basic results<br>6.1 Aim of the chapter<br>6.2 Second-order statistics<br>6.2.1 Price increments vs. returns<br>6.2.2 Autocorrelation and power spectrum<br>6.3 Distribution of returns over different time scales<br>6.3.1 Presentation of the data<br>6.3.2 The distribution of returns<br>6.3.3 Convolutions<br>6.4 Tails, what tails?<br>6.5 Extreme markets<br>6.6 Discussion<br>6.7 Summary<br><br>7 Non-linear correlations and volatility fluctuations<br>7.1 Non-linear correlations and dependence<br>7.1.1 Non identical variables<br>7.1.2 A stochastic volatility model<br>7.1.3 GARCH(I,I)<br>7.1.4 Anomalous kurtosis<br>7.1.5 The case of infinite kurtosis<br>7.2 Non-linear correlations in financial markets: empirical results<br>7.2.1 Anomalous decay of the cumulants<br>7.2.2 Volatility correlations and variogram<br>7.3 Models and mechanisms<br>7.3.1 Multifractality and multifractal models (*)<br>7.3.2 The microstructure of volatility<br> 7.4 Summary<br><br>8 Skewness and price-volatility correlations<br>8.1 Theoretical considerations<br>8.1.1 Anomalous skewness of sums of random variables<br>8.1.2 Absolute vs. relative price changes<br>8.1.3 The additive-multiplicative crossover and the q-transformation<br>8.2 A retarded model<br>8.2.1 Definition and basic properties<br>8.2.2 Skewness in the retarded model<br>8.3 Price-volatility correlations: empirical evidence<br>8.3.1 Leverage effect for stocks and the retarded model<br>8.3.2 Leverage effect for indices<br>8.3.3 Return-volume correlations<br>8.4 The Heston model: a model with volatility fluctuations and skew<br>8.5 Summary<br><br>9 Cross-correlations<br>9.1 Correlation matrices and principal component analysis<br>9.1.1 Introduction<br>9.1.2 Gaussian correlated variables<br>9.1.3 Empirical correlation matrices<br>9.2 Non-Gaussian correlated variables<br>9.2.1 Sums of non Gaussian variables<br>9.2.2 Non-linear transformation of correlated Gaussian variables<br>9.2.3 Copulas<br>9.2.4 Comparison of the two models<br>9.2.5 Multivariate Student distributions<br>9.2.6 Multivariate L~~vy variables (*)<br>9.2.7 Weakly non Gaussian correlated variables (*)<br>9.3 Factors and clusters<br>9.3.1 One factor models<br>9.3.2 Multi-factor models<br>9.3.3 Partition around medoids<br>9.3.4 Eigenvector clustering<br>9.3.5 Maximum spanning tree<br>9.4 Summary<br>9.5 Appendix A: central limit theorem for random matrices<br>9.6 Appendix B: density of eigenvalues for random correlation matrices<br><br>10 Risk measures<br>10.1 Risk measurement and diversification<br>10.2 Risk and volatility<br>10.3 Risk of loss, 'value at <br>10.4 Temporal aspects: drawdown and cumulated loss<br>10.5 Diversification and utility-satisfaction thresholds<br>10.6 Summary<br><br>11 Extreme correlations and variety<br>11.1 Extreme event correlations .<br>11.1.1 Correlations conditioned on large market moves<br>11.1.2 Real data and surrogate data<br>11.1.3 Conditioning on large individual stock returns: exceedance correlations<br>11.1.4 Tail dependence<br>11.1.5 Tail covariance (*)<br>11.2 Variety and conditional statistics of the residuals<br>11.2.1 The variety<br>11.2.2 The variety in the one-factor model<br>11.2.3 Conditional variety of the residuals<br>11.2.4 Conditional skewness of the residuals<br>11.3 Summary<br>11.4 Appendix C: some useful results on power-law variables<br><br>12 Optimal portfolios<br>12.1 Portfolios of uncorrelated assets<br>12.1.1 Uncorrelated Gaussian assets<br>12.1.2 Uncorrelated 'power-law' assets<br>12.1.3 Exponential' assets<br>12.1.4 General case: optimal portfolio and VaR (*)<br>12.2 Portfolios of correlated assets<br>12.2.1 Correlated Gaussian fluctuations<br>12.2.2 Optimal portfolios with non-linear constraints (*)<br>12.2.3 'Power-law' fluctuations - linear model (*)<br>12.2.4 'Power-law' fluctuations - Student model (*)<br>12.3 Optimized trading<br>12.4 Value-at-risk- general non-linear portfolios (*)<br>12.4.1 Outline of the method: identifying worst cases<br>12.4.2 Numerical test of the method<br>12.5 Summary<br><br>13 Futures and options: fundamental concepts<br>13.1 Introduction<br>13.1.1 Aim of the chapter<br>13.1.2 Strategies in uncertain conditions<br>13.1.3 Trading strategies and efficient markets<br>13.2 Futures and forwards<br>13.2.1 Setting the stage<br>13.2.2 Global financial balance<br>13.2.3 Riskless hedge<br>13.2.4 Conclusion: global balance and arbitrage<br>13.3 Options: definition and valuation<br>13.3.1 Setting the stage<br>13.3.2 Orders of magnitude<br>13.3.3 Quantitative <br><br>14 Options: hedging and residual risk<br>14.1 Introduction<br>14.2 Optimal hedging strategies<br>14.2.1 A simple case: static hedging<br>14.2.2 The general case and 'A' hedging<br>14.2.3 Global hedging vs. instantaneous hedging<br>14.3 Residual risk<br>14.3.1 The Black-Scholes miracle<br>14.3.2 The 'stop-loss' strategy does not work<br>14.3.3 Instantaneous residual risk and kurtosis risk<br>14.3.4 Stochastic volatility models<br>14.4 Hedging errors. A variational point of view<br>14.5 Other measures of risk-hedging and VaR (*)<br>14.6 Conclusion of the chapter<br>14.7 Summary<br>14.8 Appendix D<br><br>15 Options: the role of drift and correlations<br>15.1 Influence of drift on optimally hedged option<br>15.1.1 A perturbative expansion<br>15.1.2 'Risk neutral' probability and martingales<br>15.2 Drift risk and delta-hedged options<br>15.2.1 Hedging the drift risk<br>15.2.2 The price of delta-hedged options<br>15.2.3 A general option pricing formula<br>15.3 Pricing and hedging in the presence of temporal correlations (*)<br>15.3.1 A general model of correlations<br>15.3.2 Derivative pricing with small correlations<br>15.3.3 The case of delta-hedging<br>15.4 Conclusion<br>15.4.1 Is the price of an option unique?<br>15.4.2 Should one always optimally hedge?<br>15.5 Summary<br>15.6 Appendix E<br><br>16 Options: the Black and Scholes model<br>16.1 Ito calculus and the Black-Scholes equation<br>16.1.1 The Gaussian Bachelier model<br>16.1.2 Solution and Martingale<br>16.1.3 Time value and the cost of hedging<br>16.1.4 The Log-normal Black-Scholes model<br>16.1.5 General pricing and hedging in a Brownian world<br>16.1.6 The Greeks<br>16.2 Drift and hedge in the Gaussian model (*)<br>16.2.1 Constant drift<br>16.2.2 Price dependent drift and the Omstein-Uhlenbeck paradox<br>16.3 The binomial model<br>16.4 Summary<br><br>17 Options: some more specific<br>17.1.3 Discrete dividends<br>17.1.4 Transaction costs<br>17.2 Other types of options<br>17.2.1 'Put-call' parity<br>17.2.2 'Digital' options<br>17.2.3 'Asian' options<br>17.2.4 'American' options<br>17.2.5 'Barrier' options (*)<br>17.2.6 Other types of options<br>17.3 The 'Greeks' and risk control<br>17.4 Risk diversification (*)<br>17.5 Summary<br><br>18 Options: minimum variance Monte-Carlo<br>18.1 Plain Monte-Carlo<br>18.1.1 Motivation and basic principle<br>18.1.2 Pricing the forward exactly<br>18.1.3 Calculating the Greeks<br>18.1.4 Drawbacks of the method<br>18.2 An 'hedged' Monte-Carlo method<br>18.2.1 Basic principle of the method<br>18.2.2 A linear parameterization of the price and hedge<br>18.2.3 The Black-Scholes limit<br>18.3 Non Gaussian models and purely historical option pricing<br>18.4 Discussion and extensions. Calibration<br>18.5 Summary<br>18.6 Appendix F: generating some random variables<br><br>19 The yield curve<br>19.1 Introduction<br>19.2 The bond market<br>19.3 Hedging bonds with other bonds<br>19.3.1 The general problem<br>19.3.2 The continuous time Ganssian limit<br>19.4 The equation for bond pricing<br>19.4.1 A general solution<br>19.4.2 The Vasicek model<br>19.4.3 Forward rates<br>19.4.4 More general models<br>19.5 Empirical study of the forward rate curve<br>19.5.1 Data and notations<br>19.5.2 Quantities of interest and data analysis<br>19.6 Theoretical considerations (*)<br>19.6.1 Comparison with the Vasicek model<br>19.6.2 Market price of risk<br>19.6.3 Risk-premium and the law<br>19.7 Summary<br>19.8 Appendix G: optimal portfolio of bonds<br><br>20 Simple mechanisms for anomalous price statistics<br>20.1 Introduction<br>20.2 Simple models for herding and mimicry<br>20.2.1 Herding and percolation<br>20.2.2 Avalanches of opinion changes<br>20.3 Models of feedback effects on price fluctuations<br>20.3.1 Risk-aversion induced crashes<br>20.3.2 A simple model with volatility correlations and tails<br>20.3.3 Mechanisms for long ranged volatility correlations<br>20.4 The Minority Game<br>20.5 Summary<br>Index of most important symbols<br>Index~