目錄:1.APPLIED MULTIVARIATE METHODS<br>1.1 An Overview of Multivariate Methods 1<br>Variable-and Individual-Directed Techniques 2<br>Creating New Variables 2<br>Principal Components Analysis 3<br>Factor Analysis 3<br>Discriminant Analysis 4<br>Canonical Discriminant Analysis 5<br>Logistic Regression 5<br>Cluster Analysis 5<br>Multivariate Analysis of Variance 6<br>Canonical Variates Analysis 7<br>Canonical Correlation Analysis 7<br>Where to Find the Preceding Topics 7<br>1.2 Two Examples 8<br>Independence of Experimental Units 11<br>1.3 Types of Variables U<br>1.4 Data Matrices and Vectors 12<br>Variable Notation 13<br>Data Matrix 13<br>Data Vectors 13<br>Data Subscripts 14<br>1.5 The Multivariate Normal Distribution 15<br>Some Definitions 15<br>Summarizing Multivariate Distributions 16<br>Mean Vectors and Variance-Covariance Matrices 16<br>Correlations and Correlation Matrices 17<br>The Multivariate Normal Probability Density Function 19<br>Bivariate Normal Distributions 19<br>1.6 Statistical Computing 22<br>Cautions About Computer Usage 22<br>Missing Values 22<br>Replacing Missing Values by Zeros 23<br>Replacing Missing Values by Averages 23<br>Removing Rows of the Data Matrix 23<br>Sampling Strategies 24<br>Data Entry Errors and Data Verification 24<br>1.7 Multivariate Outliers 25<br>Locating Outliers 25<br>Dealing with Outliers 25<br>Outliers May Be Influential 26<br>1.8 Multivariate Summary Statistics 26<br>1.9 Standardized Data and/or Z Scores 27<br>Exercises 28<br><br>2.SAMPLE CORRELATIONS<br>2.1 Statistical Tests and Confidence Intervals 35<br>Are the Correlations Large Enough to Be Useful? 36<br>Confidence Intervals by the Chart Method 36<br>Confidence Intervals by Fishers Approximation 38<br>Confidence Intervals by Rubens Approximation 39<br>Variable Groupings Based on Correlations 40<br>Relationship to Factor Analysis 46<br>2.2 Summary 46<br>Exercises 47<br><br>3.MULTIVARIATE DATA PLOTS<br>3.1 Three-Dimensional Data Plots 55<br>3.2 Plots of Higher Dimensional Data 59<br>Chernoff Faces 61<br>Star Plots and Sun-Ray Plots 63<br>Andrews Plots 65<br>Side-by-Side Scatter Plots 66<br>3.3 Plotting to Check for Multivariate Normality 67<br>Summary 73<br>Exercises 73<br><br>4.EIGENVALUES AND EIGENVECTORS<br>4.1 Trace and Determinant 77<br>Examples 78<br>4.2 Eigenvalues 78<br>4.3 Eigenvectors 79<br>Positive Definite and Positive Semidefinite Matrices 80<br>4.4 Geometric Descriptions (p = 2) 82<br>Vectors 82<br>Bivariate Normal Distributions 83<br>4.5 Geometric Descriptions (p = 3) 87<br>Vectors 87<br>Trivariate Normal Distributions 87<br>4.6 Geometric Descriptions (p > 3) 90<br>Summary 91<br>Exercises 91<br><br>5.PRINCIPAL COMPONENTS ANALYSIS<br>5.1 Reasons for Using Principal Components Analysis 93<br>Data Screening 93<br>Clustering 95<br>Discriminant Analysis 95<br>Regression 95<br>5.2 Objectives of Principal Components Analysis 96<br>5.3 Principal Components Analysis on the Variance-Covariance<br>Matrix 96<br>Principal Component Scores 98<br>Component Loading Vectors 98<br>5.4 Estimation of Principal Components 99<br>Estimation of Principal Component Scores 99<br>5.5 Determining the Number of Principal Components 99<br>Method 1 100<br>Method 2 100<br>5.6 Caveats 107<br>5.7 PCA on the Correlation Matrix P 109<br>Principal Component Scores 110<br>Component Correlation Vectors 110<br>Sample Correlation Matrix 110<br>Determining the Number of Principal Components 110<br>5.8 Testing for Independence of the Original Variables 111<br>5.9 Structural Relationships 111<br>5.10 Statistical Computing Packages 112<br>SASR PRINCOMP Procedure 112<br>Principal Components Analysis Using Factor Analysis<br>Programs 118<br>PCA with SPSSs FACTOR Procedure 124<br>Summary 142<br>Exercises 142<br><br>6. FACTOR ANALYSIS<br>6.1 Objectives of Factor Analysis 147<br>6.2 Caveats 148<br>6.3 Some History of Factor Analysis 148<br>6.4 The Factor Analysis Model 150<br>Assumptions 150<br>Matrix Form of the Factor Analysis Model 151<br>Definitions of Factor Analysis Terminology 151<br>6.5 Factor Analysis Equations 151<br>Nonuniqueness of the Factors 152<br>6.6 Solving the Factor Analysis Equations 153<br>……<br>7.DISCRIMINANT ANALYSIS<br>8.LOGISTIC REGRESSION METHODS<br>9.CLUSTER ANALYSIS<br>10.MEAN VECTORS AND VARIANCE-COVARIANCE MATRICES<br>11.MULTIVARIATE ANALYSIS OF VARIANCE<br>12.PREDICTION MODELS AND MULTIVARIATE REGRESSION<br>APPENDIX A:MATRIX RESULTS<br>APPENDIX B:WORK ATTITUDES SURVEY<br>APPENDIX C:FAMILY CONTROL STUDY<br>REFERENCES<br>INDEX