作者簡(jiǎn)介: Kenneth H. Rosen 1972年獲密歇根大學(xué)數(shù)學(xué)學(xué)士學(xué)位,1976年獲麻省理工學(xué)院數(shù)學(xué)博士學(xué)位,1982年加入貝爾實(shí)驗(yàn)室,現(xiàn)為AT&T實(shí)驗(yàn)室特別成員,國(guó)際知名的計(jì)算機(jī)數(shù)學(xué)專家。Rosen博士對(duì)數(shù)論領(lǐng)域與數(shù)學(xué)建模領(lǐng)域頗有研究,并寫過(guò)很多經(jīng)典論文及專著。他的經(jīng)典著作《離散數(shù)學(xué)及其應(yīng)用》的中文版和影印版均已由機(jī)械工業(yè)出版社引進(jìn)出版。
目錄:list of symbols x <br>what is number theory? <br>1 the integers 5 <br>1.1 numbers and sequences 5 <br>1.2 sums and products 16 <br>1.3 mathematical induction 23 <br>1.4 the fibonacci numbers 30 <br>1.5 divisibility 36 <br><br>2 integer representations and operations 45 <br>2.1 representations of integers 45 <br>2.2 computer operations with integers 54 <br>2.3 complexity of integer operations 61 <br>3 primes and greatest common divisors 69 <br>3.1 prime numbers 70 <br>3.2 the distribution of primes 79 <br>3.3 greatest common divisors and their properties 93 <br>3.4 the euclidean algorithm 102 <br>3.5 the fundamental theorem of arithmetic 112 <br>3.6 factorization methods and the fermat numbers 127 <br>3.7 linear diophantine equations 137 <br><br>4 congruences 145 <br>4.1 introduction to congruences 145 <br>4.2 linear congruences 157 <br>4.3 the chinese remainder theorem 162 <br>4.4 solving polynomial congruences 171 <br>4.5 systems of linear congruences 178 <br>4.6 factoring using the pollard rho method 187 <br><br>5 applications of congruences 191 <br>5.1 divisibility tests 191 <br>5.2 the perpetual calendar 197 <br>5.3 round-robin tournaments 202 <br>5.4 hashing functions 204 <br>5.5 check digits 209 <br><br>6 some special congruences 217 <br>6.1 wilsons theorem and fermats little theorem 217 <br>6.2 pseudoprimes 225 <br>6.3 eulers theorem 234 <br><br>7 multiplicative functions 239 <br>7.1 the euler phi-function 239 <br>7.2 the sum and number of divisors 249 <br>7.3 perfect numbers and mersenne primes 256 <br>7.4 misbius inversion 269 <br>7.5 partitions 277 <br><br>8 cryptology 291 <br>8.1 character ciphers 291 <br>8.2 block and stream ciphers 300 <br>8.3 exponentiation ciphers 318 <br>8.4 public key cryptography 321 <br>8.5 knapsack ciphers 331 <br>8.6 cryptographic protocols and applications 338 <br><br>9 primitive roots 347 <br>9.1 the order of an integer and primitive roots 347 <br>9.2 primitive roots for primes 354 <br>9.3 the existence of primitive roots 360 <br>9.4 discrete logarithms and index arithmetic 368 <br>9.5 primality tests using orders of integers and primitive roots 378 <br>9.6 universal exponents 385 <br><br>10 applications of primitive roots and the <br>order of an integer 393 <br>10.1 pseudorandom numbers 393 <br>10.2 the eigamal cryptosystem 402 <br>10.3 an application to the splicing of telephone cables 408 <br><br>11 quadratic residues 415 <br>11.1 quadratic residues and nonresidues 416 <br>11.2 the law of quadratic reciprocity 430 <br>11.3 the jacobi symbol 443 <br>11.4 euler pseudoprimes 453 <br>11.5 zero-knowledge proofs 461 <br><br>12 decimal fractions and continued fractions 469 <br>12.1 decimal fractions 469 <br>12.2 finite continued fractions 481 <br>12.3 infinite continued fractions 491 <br>12.4 periodic continued fractions 503 <br>12.5 factoring using continued fractions 517 <br><br>13 some nonlinear diophantine equations 521 <br>13.1 pythagorean triples 522 <br>13.2 fermats last theorem 530 <br>13.3 sums of squares 542 <br>13.4 pells equation 553 <br>13.5 congruent numbers 560 <br><br>14 the gaussian integers 577 <br>14.1 gaussian integers and gaussian primes 577 <br>14.2 greatest common divisors and unique factorization 589 <br>14.3 gaussian integers and sums of squares 599 <br>appendix a axioms for the set of integers 605 <br>appendix b binomial coefficients 608 <br>appendix c using maple and mathematica for number theory 615 <br>c.1 using maple for number theory 615 <br>c.2 using mathematica for number theory 619 <br>appendix d number theory web links 624 <br>appendix e tables 626 <br>answers to odd-numbered exercises 641 <br>bibliography 721 <br>index of biographies 733 <br>index 735 <br>photo credits 752