久久人人做人人妻人人玩精品hd,精品国产成人av在线,好姑娘在线视频免费观看 ,含羞草电影免费看韩国,果冻传媒一区

當(dāng)前位置 : 首頁  圖書 正文

Python機(jī)器學(xué)習(xí)入門(影印版 英文版)簡介,目錄書摘

2020-01-10 11:35 來源:京東 作者:京東
python機(jī)器學(xué)習(xí)入門
Python機(jī)器學(xué)習(xí)入門(影印版 英文版)
暫無報價
1900+評論 99%好評
編輯推薦:
內(nèi)容簡介:  機(jī)器學(xué)習(xí)已經(jīng)成為許多商業(yè)應(yīng)用和研究項目的一個組成部分,同時擁有廣泛研究團(tuán)隊的大型公司也投入到這個領(lǐng)域。如果你使用Python,即使是初學(xué)者,《Python機(jī)器學(xué)習(xí)入門(影印版 英文版)》也將教你如何構(gòu)建自己的機(jī)器學(xué)習(xí)解決方案。有了目前可用的豐富數(shù)據(jù),機(jī)器學(xué)習(xí)應(yīng)用程序只受限于你的想象力。
  你將學(xué)習(xí)使用Python和scikit-learn庫所需的全部步驟來創(chuàng)建成功的機(jī)器學(xué)習(xí)應(yīng)用程序?!禤ython機(jī)器學(xué)習(xí)入門(影印版 英文版)》作者安德烈亞斯·穆勒、莎拉·圭多專注于使用機(jī)器學(xué)習(xí)算法的實踐方面,而不會過多討論其背后的數(shù)學(xué)原理。熟悉NumPy和matplotlib庫將有助于你從《Python機(jī)器學(xué)習(xí)入門(影印版 英文版)》中獲得*多信息。
  有了《Python機(jī)器學(xué)習(xí)入門(影印版 英文版)》,你會學(xué)到:機(jī)器學(xué)習(xí)的基本概念和應(yīng)用程序各種廣泛使用的機(jī)器學(xué)習(xí)算法的優(yōu)點和缺點如何呈現(xiàn)通過機(jī)器學(xué)習(xí)處理后的數(shù)據(jù),包括需要關(guān)注的數(shù)據(jù)方面于模型評估和參數(shù)調(diào)整的**方法用于連接模型和封裝工作流的管道的概念處理文本數(shù)據(jù)的方法,包括特定于文本的處理技術(shù)改善你的機(jī)器學(xué)習(xí)和數(shù)據(jù)科學(xué)技能的建議
作者簡介:  AndreasMuller,在波恩大學(xué)的機(jī)器學(xué)習(xí)專業(yè)獲得博士學(xué)位。在擔(dān)任計算機(jī)視覺應(yīng)用的機(jī)器學(xué)習(xí)研究員后,他加入了紐約大學(xué)數(shù)據(jù)科學(xué)中心:他也是scikit-learn維護(hù)者和核心貢獻(xiàn)者。SarahGuido,是一位數(shù)據(jù)科學(xué)家,與許多創(chuàng)業(yè)公司有密切合作,近擔(dān)任Bitly的首席數(shù)據(jù)科學(xué)家。Sarah獲得密歇根大學(xué)信息科學(xué)碩士學(xué)位,在多個學(xué)術(shù)會議上成功地發(fā)表了演講。
目錄:Preface
1. Introduction
Why Machine Learning?
Problems Machine Learning Can Solve
Knowing Your Task and Knowing Your Data
Why Python?
scikit-learn
Installing scikit-learn
Essential Libraries and Tools
Jupyter Notebook
NumPy
SciPy
matplotlib
pandas
mglearn
Python 2 Versus Python 3
Versions Used in this Book
A First Application: Classifying Iris Species
Meet the Data
Measuring Success: Training and Testing Data
First Things First: Look at Your Data
Building Your First Model: k-Nearest Neighbors
Making Predictions
Evaluating the Model
Summary and Outlook

2. Supervised Learning
Classification and Regression
Generalization, Overfitting, and Underfitting
Relation of Model Complexity to Dataset Size
Supervised Machine Learning Algorithms
Some Sample Datasets
k-Nearest Neighbors
Linear Models
Naive Bayes Classifiers
Decision Trees
Ensembles of Decision Trees
Kernelized Support Vector Machines
Neural Networks (Deep Learning)
Uncertainty Estimates from Classifiers
The Decision Function
Predicting Probabilities
Uncertainty in Multiclass Classification
Summary and Outlook

3. Unsupervised Learning and Preprocessing
Types of Unsupervised Learning
Challenges in Unsupervised Learning
Preprocessing and Scaling
Different Kinds of Preprocessing
Applying Data Transformations
Scaling Training and Test Data the Same Way
The Effect of Preprocessing on Supervised Learning
Dimensionality Reduction, Feature Extraction, and Manifold Learning
Principal Component Analysis (PCA)
Non-Negative Matrix Factorization (NMF)
Manifold Learning with t-SNE
Clustering
k-Means Clustering
Agglomerative Clustering
DBSCAN
Comparing and Evaluating Clustering Algorithms
Summary of Clustering Methods
Summary and Outlook

4. Representing Data and Engineering Features
Categorical Variables
One-Hot-Encoding (Dummy Variables)
Numbers Can Encode Categoricals
Binning, Discretization, Linear Models, and Trees
Interactions and Polynomials
Univariate Nonlinear Transformations
Automatic Feature Selection
Univariate Statistics
Model-Based Feature Selection
Iterative Feature Selection
Utilizing Expert Knowledge
Summary and Outlook

5. Model Evaluation and Improvement
Cross-Validation
Cross-Validation in scikit-learn
Benefits of Cross-Validation
Stratified k-Fold Cross-Validation and Other Strategies
Grid Search
Simple Grid Search
The Danger of Overfitting the Parameters and the Validation Set
Grid Search with Cross-Validation
Evaluation Metrics and Scoring
Keep the End Goal in Mind
Metrics for Binary Classification
Metrics for Multiclass Classification
Regression Metrics
Using Evaluation Metrics in Model Selection
Summary and Outlook

6. Algorithm Chains and Pipelines
Parameter Selection with Preprocessing
Building Pipelines
Using Pipelines in Grid Searches
The General Pipeline Interface
Convenient Pipeline Creation with make_pipeline
Accessing Step Attributes
Accessing Attributes in a Grid-Searched Pipeline
Grid-Searching Preprocessing Steps and Model Parameters
Grid-Searching Which Model To Use
Summary and Outlook

7. Working with Text Data
Types of Data Represented as Strings
Example Application: Sentiment Analysis of Movie Reviews
Representing Text Data as a Bag of Words
Applying Bag-of-Words to a Toy Dataset
Bag-of-Words for Movie Reviews
Stopwords
Rescaling the Data with tf-idf
Investigating Model Coefficients
Bag-of-Words with More Than One Word (n-Grams)
Advanced Tokenization, Stemming, and Lemmatization
Topic Modeling and Document Clustering
Latent Dirichlet Allocation
Summary and Outlook

8. Wrapping Up
Approaching a Machine Learning Problem
Humans in the Loop
From Prototype to Production
Testing Production Systems
Building Your Own Estimator
Where to Go from Here
Theory
Other Machine Learning Frameworks and Packages
Ranking, Recommender Systems, and Other Kinds of Learning
Probabilistic Modeling, Inference, and Probabilistic Programming
Neural Networks
Scaling to Larger Datasets
Honing Your Skills
Conclusion
Index
相關(guān)商品
熱門推薦文章
相關(guān)優(yōu)評榜
品類齊全,輕松購物 多倉直發(fā),極速配送 正品行貨,精致服務(wù) 天天低價,暢選無憂
購物指南
購物流程
會員介紹
生活旅行/團(tuán)購
常見問題
大家電
聯(lián)系客服
配送方式
上門自提
211限時達(dá)
配送服務(wù)查詢
配送費收取標(biāo)準(zhǔn)
海外配送
支付方式
貨到付款
在線支付
分期付款
郵局匯款
公司轉(zhuǎn)賬
售后服務(wù)
售后政策
價格保護(hù)
退款說明
返修/退換貨
取消訂單
特色服務(wù)
奪寶島
DIY裝機(jī)
延保服務(wù)
京東E卡
京東通信
京東JD+