目錄: Preface<br> Motivation<br> Aims, Readership and Book Structure<br> Final Word and Acknowledgments<br> Description of Contents by Chapter<br> Abbreviations and Notation<br> <br> Part I. BASIC DEFINITIONS AND NO ARBITRAGE<br> 1. Definitions and Notation<br> 1.1 The Bank Account and the Short Rate<br> 1.2 Zero-Coupon Bonds and Spot Interest Rates<br> 1.3 Fundamental Interest-Rate Curves<br> 1.4 Forward Rates<br> 1.5 Interest-Rate Swaps and Forward Swap Rates<br> 1.6 Interest-Rate Caps/Floors and Swaptions<br> <br> 2. No-Arbitrage Pricing and Numeraire Change<br> 2.1 No-Arbitrage in Continuous Time<br> 2.2 The Change-of-Numeraire Technique<br> 2.3 A Change of Numeraire Toolkit(Brigo & Mercurio 2001c)<br> 2.3.1 A helpful notation: "DC"<br> 2.4 The Choice of a Convenient Numeraire<br> 2.5 The Forward Measure<br> 2.6 The Fundamental Pricing Formulas<br> 2.6.1 The Pricing of Caps and Floors<br> 2.7 Pricing Claims with Deferred Payoffs<br> 2.8 Pricing Claims with Multiple Payoffs<br> 2.9 Foreign Markets and Numeraire Change<br> <br> Part II. FROM SHORT RATE MODELS TO HJM<br> 3. One-factor short-rate models<br> 3.1 Introduction and Guided Tour<br> 3.2 Classical Time-Homogeneous Short-Rate Models<br> 3.2.1 The Vasicek Model<br> 3.2.2 The Dothan Model<br> 3.2.3 The Cox, Ingersoll and Ross (CIR) Model<br> 3.2.4 Affine Term-Structure Models<br> 3.2.5 The Exponential-Vasicek (EV) Model<br> 3.3 The Hull-White Extended Vasicek Model<br> 3.3.1 The Short-Rate Dynamics<br> 3.3.2 Bond and Option Pricing<br> 3.3.3 The Construction of a Trinomial Tree<br> 3.4 Possible Extensions of the CIR Model<br> 3.5 The Black-Karasinski Model<br> 3.5.1 The Short-Rate Dynamics<br> 3.5.2 The Construction of a Trinomial Tree<br> 3.6 Volatility Structures in One-Factor Short-Rate Models<br> 3.7 Humped-Volatility Short-Rate Models<br> 3.8 A General Deterministic-Shift Extension<br> 3.8.1 The Basic Assumptions<br> 3.8.2 Fitting the Initial Term Structure of Interest Rates<br> 3.8.3 Explicit Formulas for European Options<br> 3.8.4 The Vasicek Case<br> 3.9 The CIR++ Model<br> 3.9.1 The Construction of a Trinomial Tree<br> 3.9.2 Early Exercise Pricing via Dynamic Programming<br> 3.9.3 The Positivity of Rates and Fitting Quality<br> 3.9.4 Monte Carlo Simulation<br> 3.9.5 Jump Diffusion CIR and CIR++ models (JCIR, JCIR++)<br> 3.10 Deterministic-Shift Extension of Lognormal Models<br> 3.11 Some Further Remarks on Derivatives Pricing<br> 3.11.1 Pricing European Options on a Coupon-Bearing Bond<br> 3.11.2 The Monte Carlo Simulation<br> 3.11.3 Pricing Early-Exercise Derivatives with a Tree<br> 3.11.4 A Fundamental Case of Early Exercise: BermudanStyle Swaptions.<br> 3.12 Implied Cap Volatility Curves<br> 3.12.1 The Black and Karasinski Model<br> 3.12.2 The CIR++ Model<br> 3.12.3 The Extended Exponential-Vasicek Model<br> 3.13 Implied Swaption Volatility Surfaces<br> 3.13.1 The Black and Karasinski Model<br> 3.13.2 The Extended Exponential-Vasicek Model<br> 3.14 An Example of Calibration to Real-Market Data Two-Factor Short-Rate Models<br> 4.1 Introduction and Motivation<br> 4.2 The Two-Additive-Factor Gaussian Model G2++<br> 4.2.1 The Short-Rate Dynamics<br> 4.2.2 The Pricing of a Zero-Coupon Bond<br> 4.2.3 Volatility and Correlation Structures in Two-Factor Models<br> 4.2.4 The Pricing of a European Option on a Zero-Coupon Bond<br> 4.2.5 The Analogy with the Hull-White Two-Factor Model<br> 4.2.6 The Construction of an Approximating Binomial Tree<br> 4.2.7 Examples of Calibration to Real-Market Data<br> 4.3 The Two-Additive-Factor Extended CIR/LS Model CIR2++<br> 4.3.1 The Basic Two-Factor CIR2 Model<br> 4 3 2 Relationship with the Longstaff and Schwartz Model (LS)<br> 4.3.3 Forward-Measure Dynamics and Option Pricing for CIR2<br> 4.3.4 The CIR2++ Model and Option Pricing<br> <br> 5. The Heath-Jarrow-Morton (HJM) Framework<br> 5.1 The HJM Forward-Rate Dynamics<br> 5.2 Markovianity of the Short-Rate Process<br> 5.3 The Ritchken and Sankarasubramanian Framework<br> 5.4 The Mercurio and Moraleda Model<br> <br> Part III. MARKET MODELS<br> 6. The LIBOR and Swap Market Models (LFM and LSM)<br> 6.1 Introduction<br> 6.2 Market Models: a Guided Tour.<br> 6.3 The Lognormal Forward-LIBOR Model (LFM)<br> 6.3.1 Some Specifications of the Instantaneous Volatility of Forward Rates<br> 6.3.2 Forward-Rate Dynamics under Different Numeraires<br> 6.4 Calibration of the LFM to Caps and Floors Prices<br> 6.4.1 Piecewise-Constant Instantaneous-Volatility Structures<br> 6.4.2 Parametric Volatility Structures<br> 6.4.3 Cap Quotes in the Market<br> 6.5 The Term Structure of Volatility<br> 6.5.1 Piecewise-Constant Instantaneous Volatility Structures<br> 6.5.2 Parametric Volatility Structures<br> 6.6 Instantaneous Correlation and Terminal Correlation<br> 6.7 Swaptious and the Lognormal Forward-Swap Model (LSM)<br> 6.7.1 Swaptions Hedging<br> 6.7.2 Cash-Settled Swaptions<br> 6.8 Incompatibility between the LFM and the LSM<br> 6.9 The Structure of Instantaneous Correlations<br> 6.9.1 Some convenient full rank parameterizations<br> 6.9.2 Reduced-rank formulations: Rebonato's angles and eigen- values zeroing<br> 6.9.3 Reducing the angles<br> 6.10 Monte Carlo Pricing of Swaptions with the LFM<br> 6.11 Monte Carlo Standard Error<br> 6.12 Monte Carlo Variance Reduction: Control Variate Estimator<br> 6.13 Rank-One Analytical Swaption Prices<br> 6.14 Rank-r Analytical Swaption Prices<br> 6.15 A Simpler LFM Formula for Swaptions Volatilities<br> 6.16 A Formula for Terminal Correlations of Forward Rates<br> 6.17 Calibration to Swaptions Prices<br> 6.18 Instantaneous Correlations: Inputs (Historical Estimation) or Outputs (Fitting Parameters)?<br> 6.19 The exogenous correlation matrix<br> 6.19.1 Historical Estimation<br> 6.19.2 Pivot matrices<br> 6.20 Connecting Caplet and S x 1-Swaption Volatilities<br> 6.21 Forward and Spot Rates over Non-Standard Periods<br> 6.21.1 Drift Interpolation<br> 6.21.2 The Bridging Technique<br> <br> 7. Cases of Calibration of the LIBOR Market Model<br> 7.1 Inputs for the First Cases<br> 7.2 Joint Calibration with Piecewise-Constant Volatilities as in TABLE 5<br> 7.3 Joint Calibration with Parameterized Volatilities as in Formulation 7<br> 7.4 Exact Swaptions "Cascade" Calibration with Volatilities as in TABLE 1<br> 7.4.1 Some Numerical Results<br> 7.5 A Pause for Thought<br> 7.5.1 First summary<br> 7.5.2 An automatic fast analytical calibration of LFM to swaptions. Motivations and plan<br> 7.6 Further Numerical Studies on the Cascade Calibration Algorithm<br> ……<br> 8.Monte Carlo Tests for LFM Analytical Approximations <br> Part Ⅳ.THE VOLATILITY SMILF <br> 9.Including the Smile in the LFM <br> 10.Local-Volatility Models <br> 11.Stochasti-Volatility Models <br> 12.Uncertain-Parameter Models <br> Part Ⅴ.EXAMPLES OF MARKET PAYOFFS <br> 13.Pricing Derivatives on a Single Interest-Rate Curve <br> 14.Pricing Derivatives on Two Interest-Rate Curves <br> Part Ⅵ.INFLATION <br> 15.Pricing of Inflation-Indexed Derivatives <br> 16.Inflation Indexed Swaps <br> 17.Inflation-Indexed Caplets/Floorlets <br> 18.Calibration to market data <br> 19.Introducing Stochastic Volatility <br> 20.Pricing Hybrids with an Inflation Component <br> Part Ⅶ.CREDIT <br> 21.Introduction and Pricing under Counterparty Risk <br> 22.Intensity Models <br> 23.CDS Options Market Models <br> Part Ⅷ.APPENDICES <br> A.Other Interest-Rate Models <br> B.Pricing Equity Derivatives under Stochastic Rates <br> C.A Crash Intro to Stochastic Differential Equations and Poisson Processes <br> D.A Useful Calculation <br> E.A Second Useful Calculation <br> F.Approximating Diffusions with Trees <br> G.Trivia and Frequently Asked Questions <br> H.Talking to the Traders <br> References <br> Index